

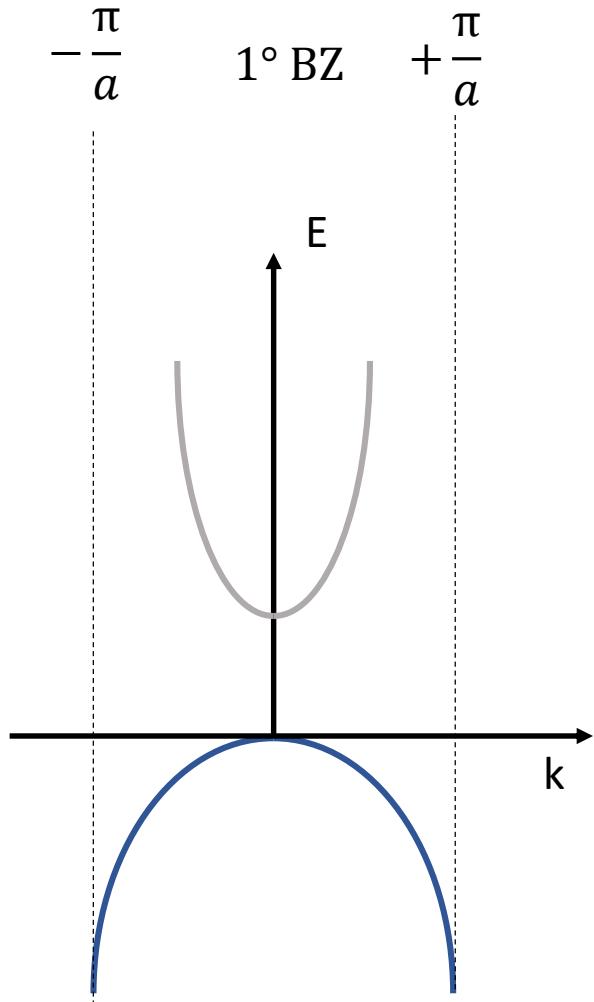
Class 03

Band Structures of real materials

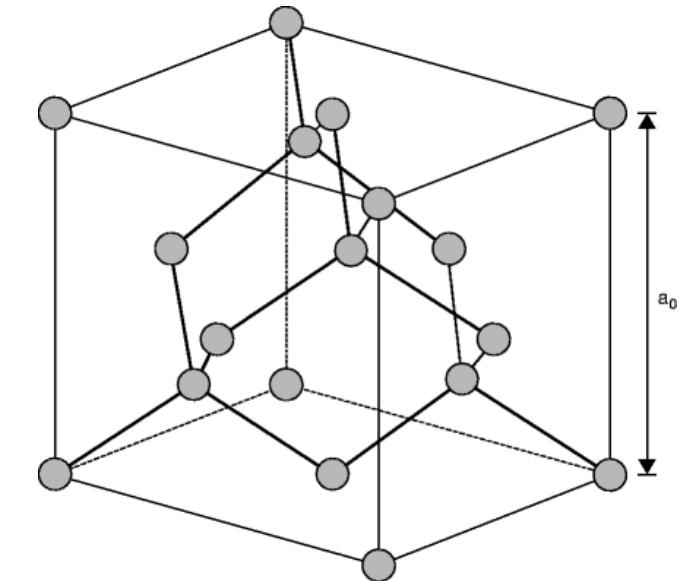
24.02.2025

- ❑ Crystal lattice and reciprocal space
 - Brillouin zone
 - Valence bands and split-off
- ❑ Exercise: Alloys
- ❑ Dispersion relationship in low-dimensional semiconductors
 - Particle in a box
 - Quantum well
- ❑ Band Structure and Density of States

Sketch vs real band structure

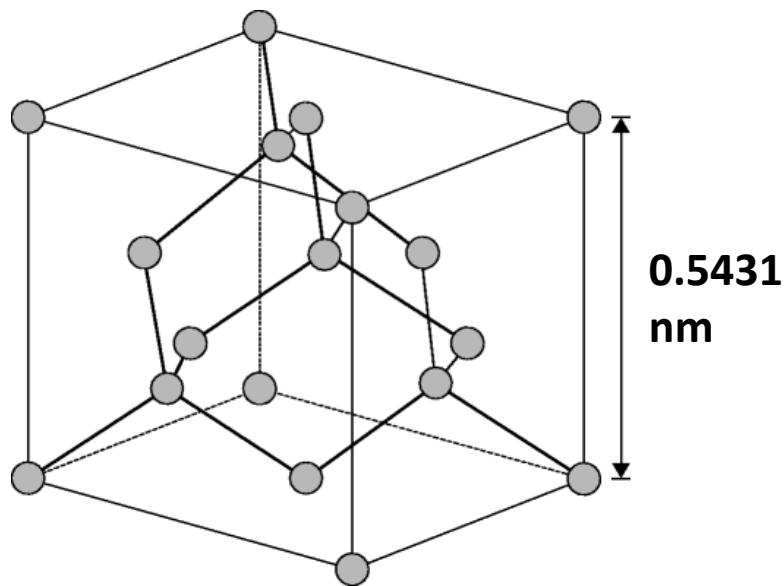


- Periodicity (unit cell)
- Reciprocal space (BZ)
- Atomic potential and energy gap
- Dispersion relationship
- Effective mass
- Electrons and holes

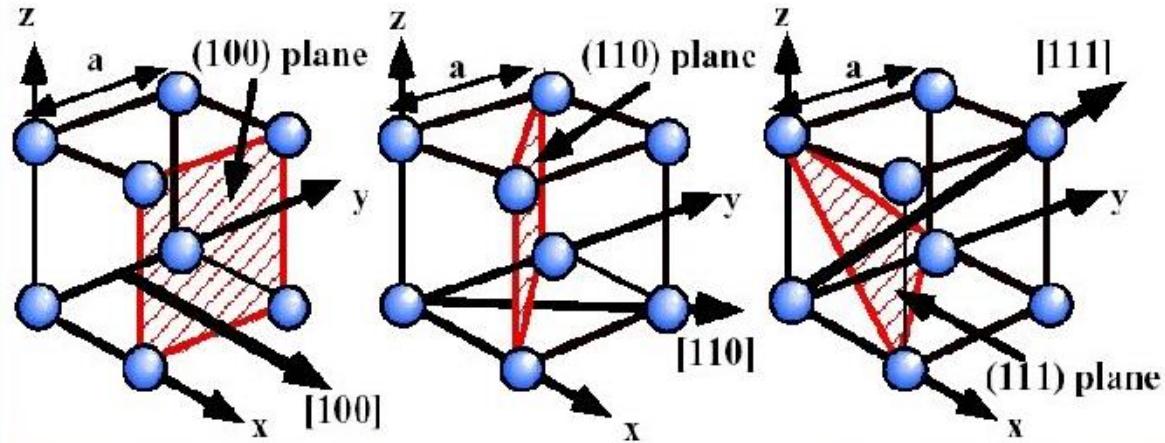


SILICON

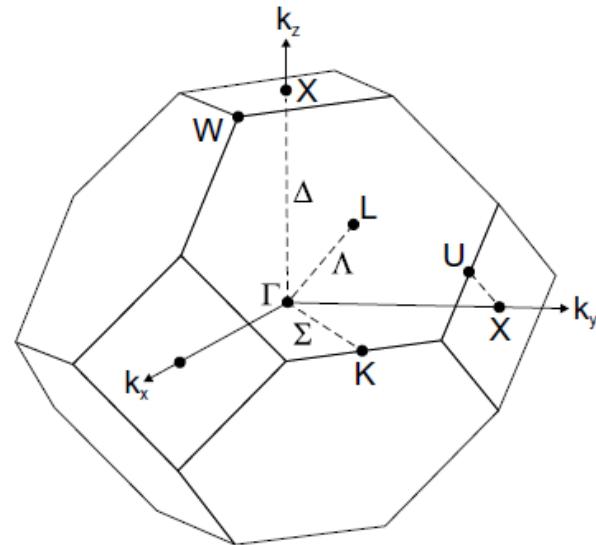
Face Center Cubic (FCC) Diamond Cubic



(100), (110), (111) crystal planes



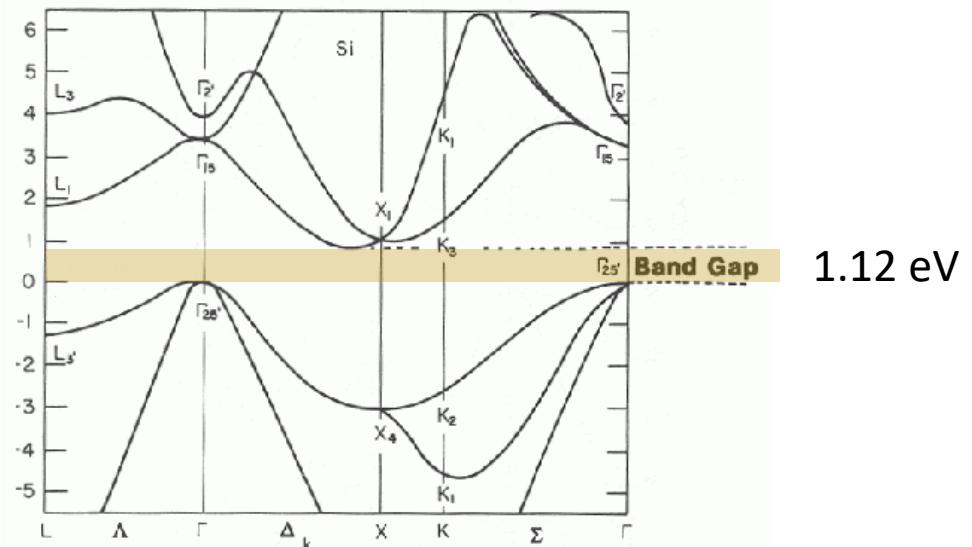
Brillouin Zone (Reciprocal Space) Face Center Cubic (FCC)



$\Gamma = (000)$
 $X = (001)$
 $K = (110)$
 $L = (111)$

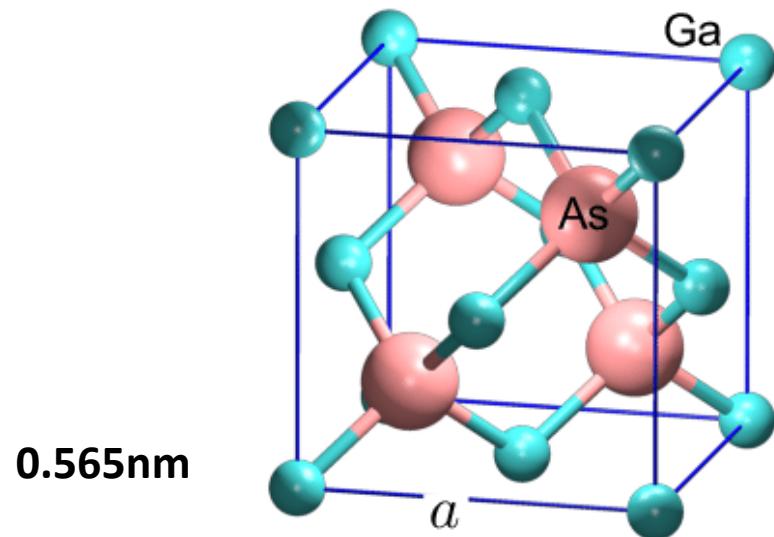
Grundmann 3.6

Band structure

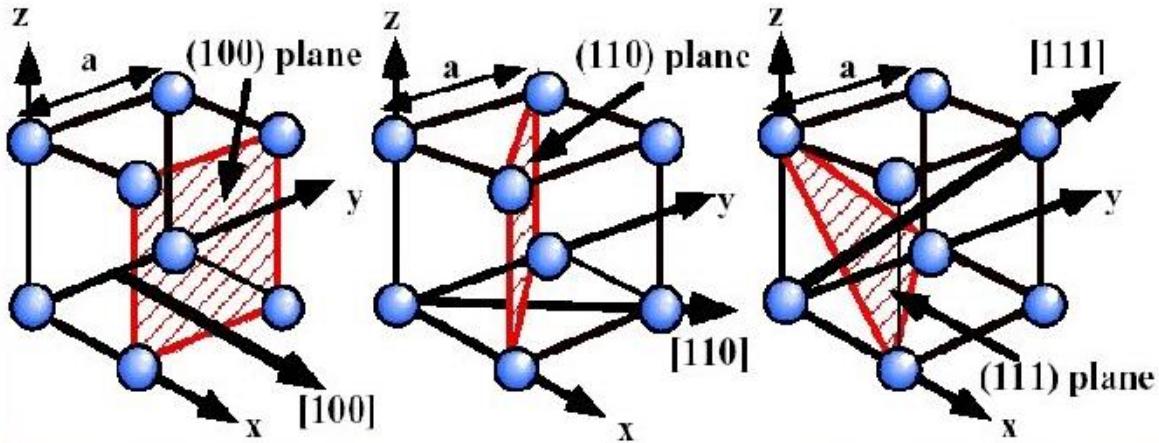


GaAs

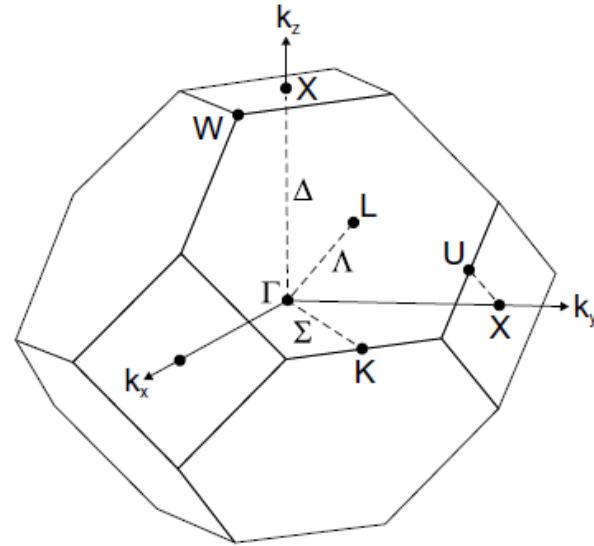
Face Center Cubic (FCC) Zinc blende



(100), (110), (111) crystal planes



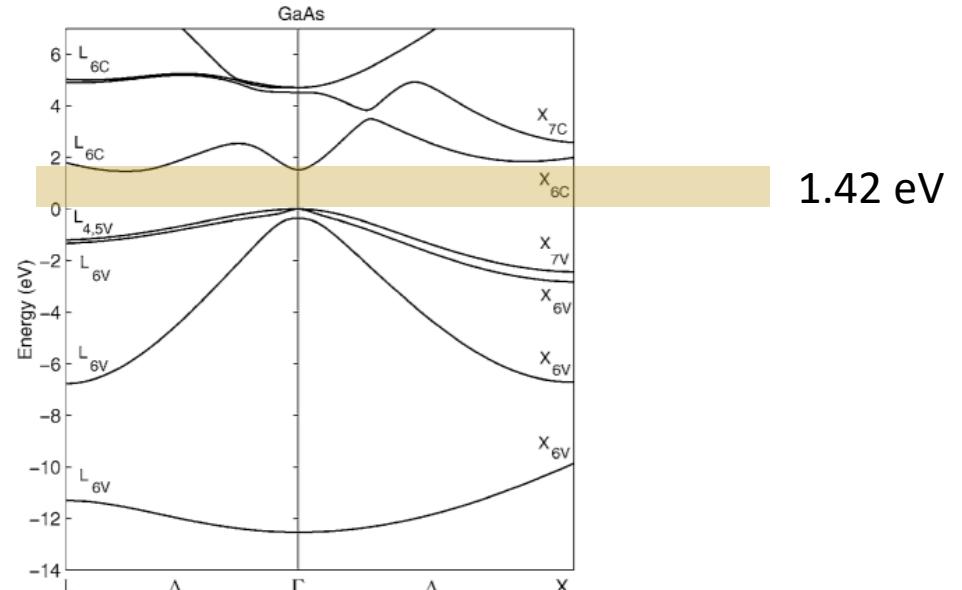
Brillouin Zone (Reciprocal Space) Face Center Cubic (FCC)



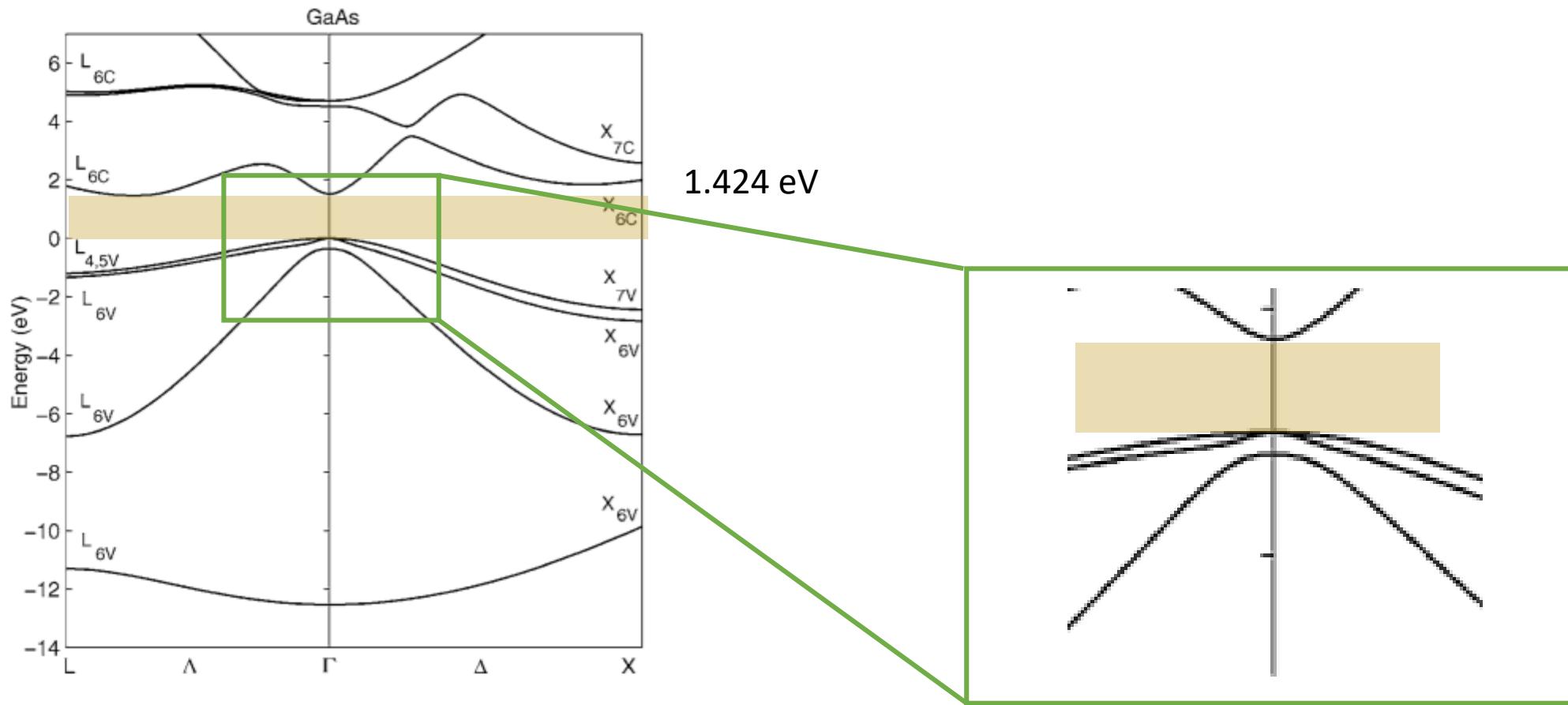
$\Gamma = (000)$
 $X = (001)$
 $K = (110)$
 $L = (111)$

Grundmann 3.6

Band structure



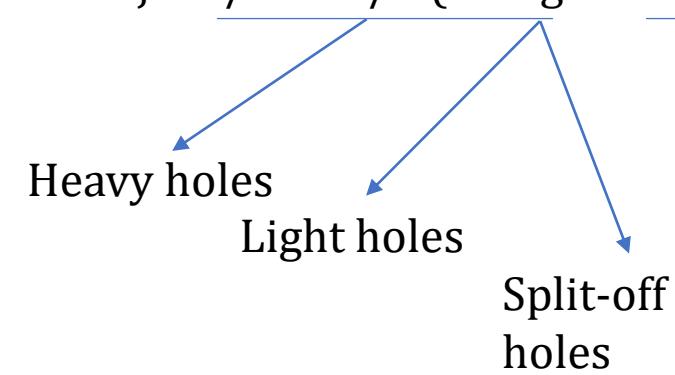
Conduction and Valence bands in real materials



1 Conduction band
3 Valence bands

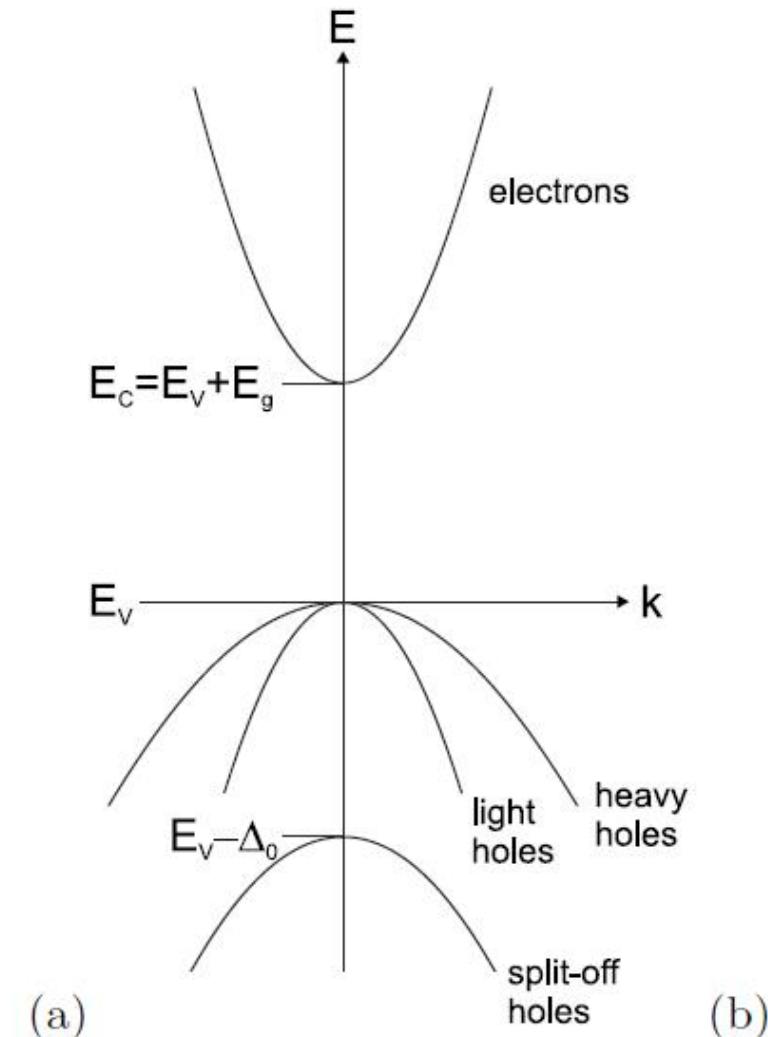
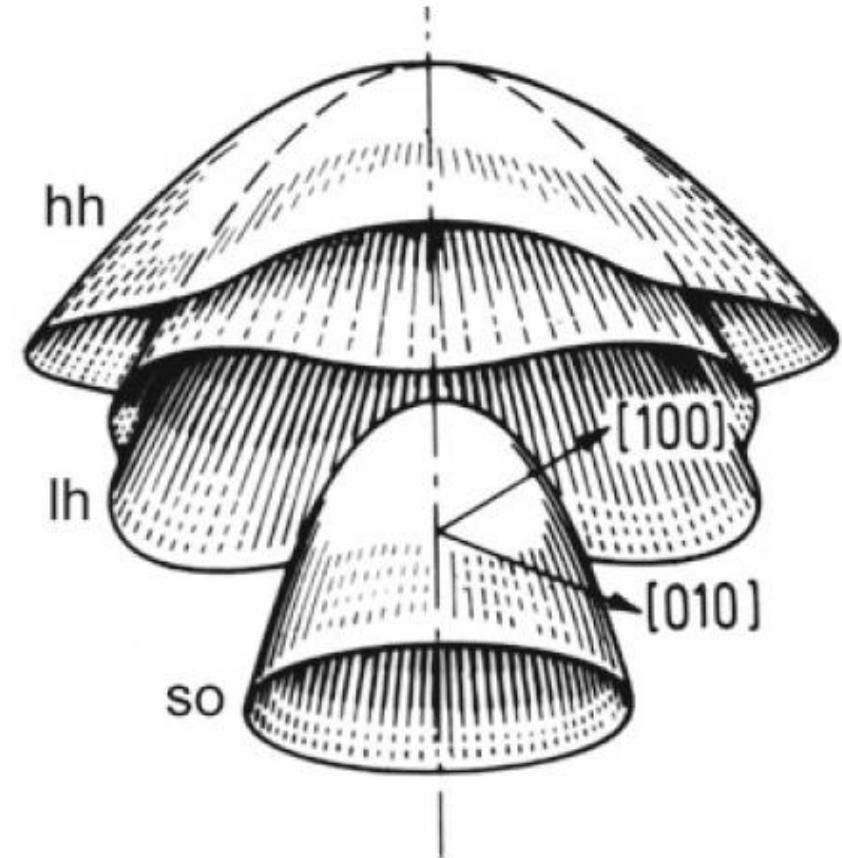
Valence bands in zinc-blende lattices

$l = 1$
 $s = \pm 1/2$
 $j = 3/2 \text{ or } 1/2 \text{ (2-degenerate)}$



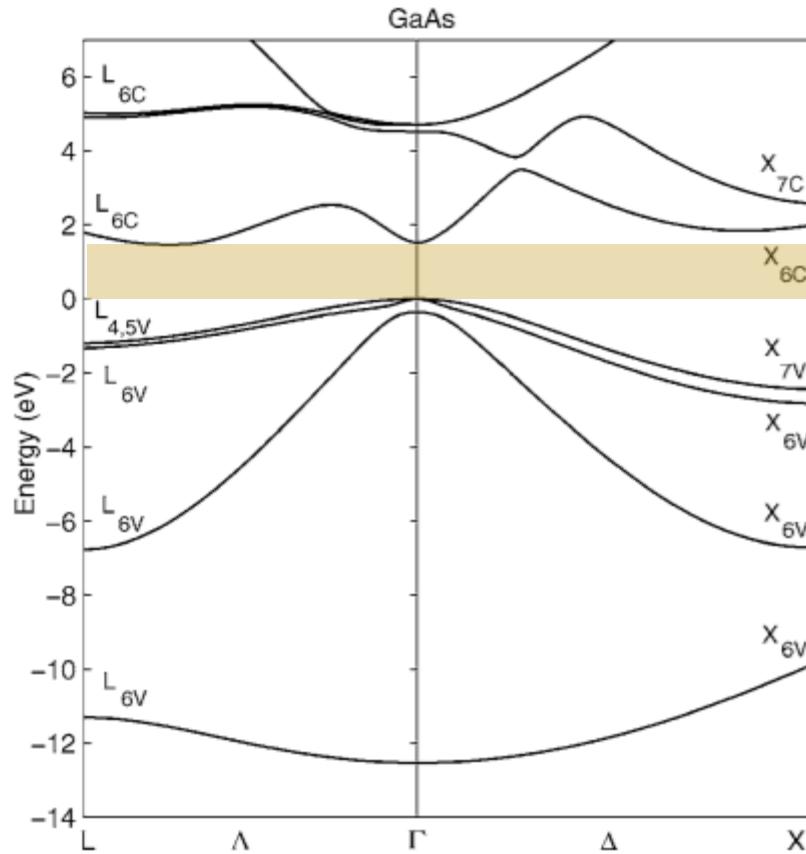
The split-off energy Δ_0 arises from the interaction of the atomic angular momentum and the electron spin.

Materials with high spin-orbit interaction have high Δ_0 values.

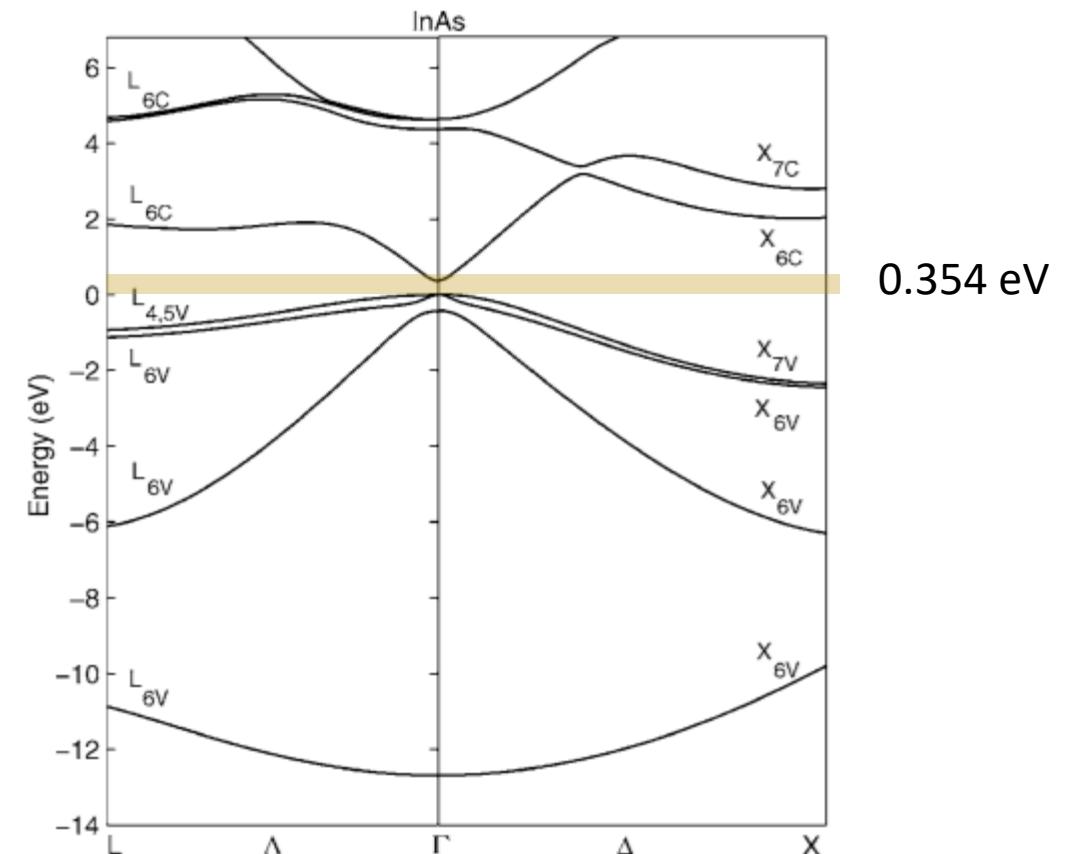


Valence bands in Ge

In-Class Exercise



1.424 eV



0.354 eV

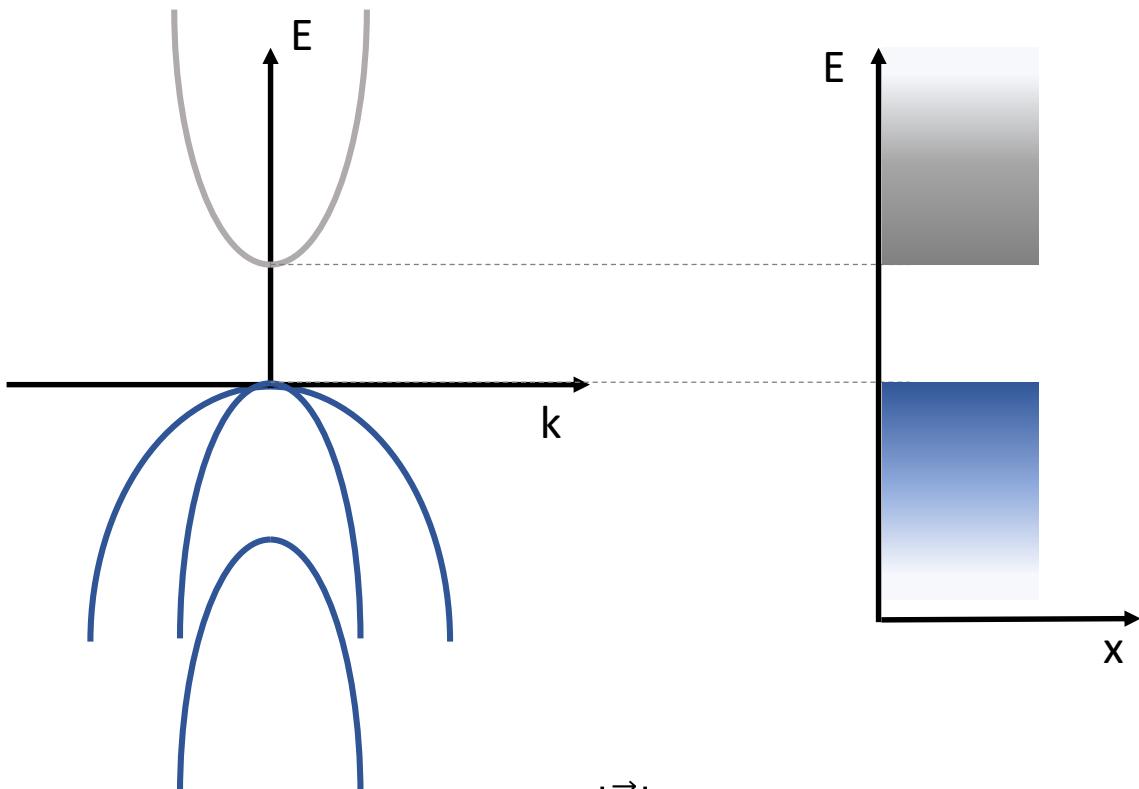
Could you write the function to calculate the band gap of the ternary alloy $\text{In}_{(1-x)}\text{Ga}_x\text{As}$?

10 minutes

To be discussed in Class

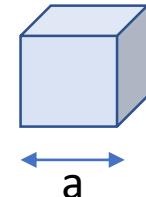
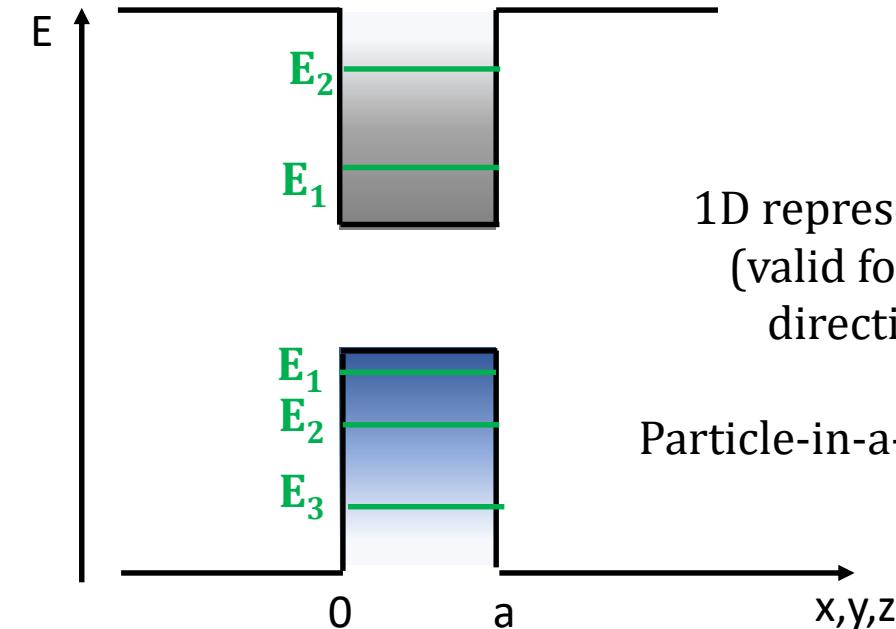
Band structure in quantum dots

$E(k)$ relation in bulk



$$E = \frac{\hbar^2 |\vec{k}|^2}{2m^*}$$

Energy levels in 0D

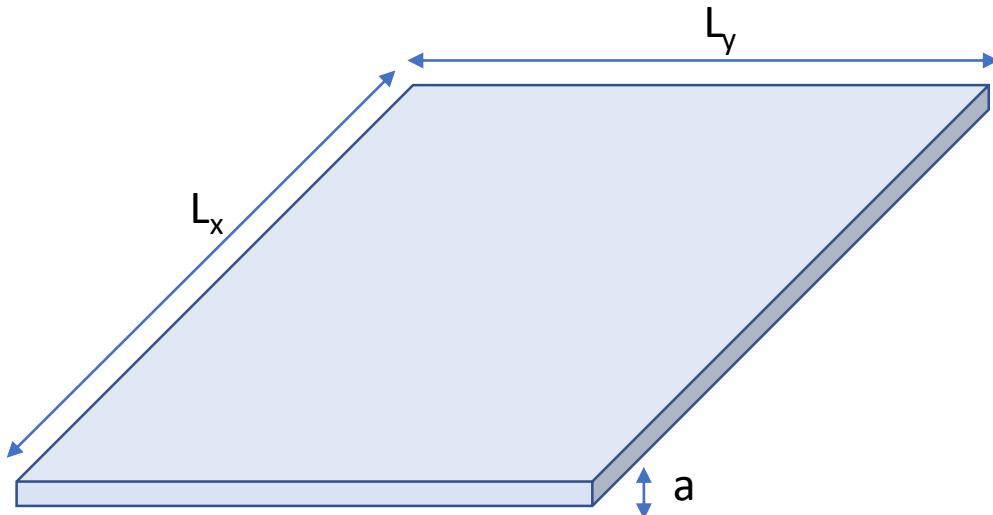


$$E_n = \frac{\hbar^2 |k_n|^2}{2m^*} \quad \text{where } k_n = \frac{n * \pi}{a}$$

Homework:

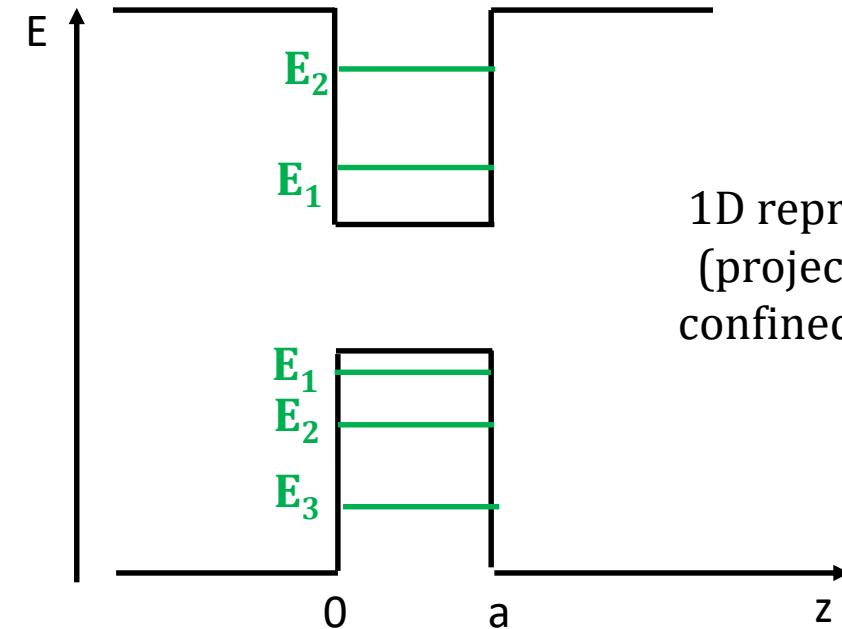
The sketch contains 3 discrete levels in the valence band and only 2 in the conduction band: why?

Band structure in quantum wells



$$Lx, Ly \gg a$$

Energy levels in 2D

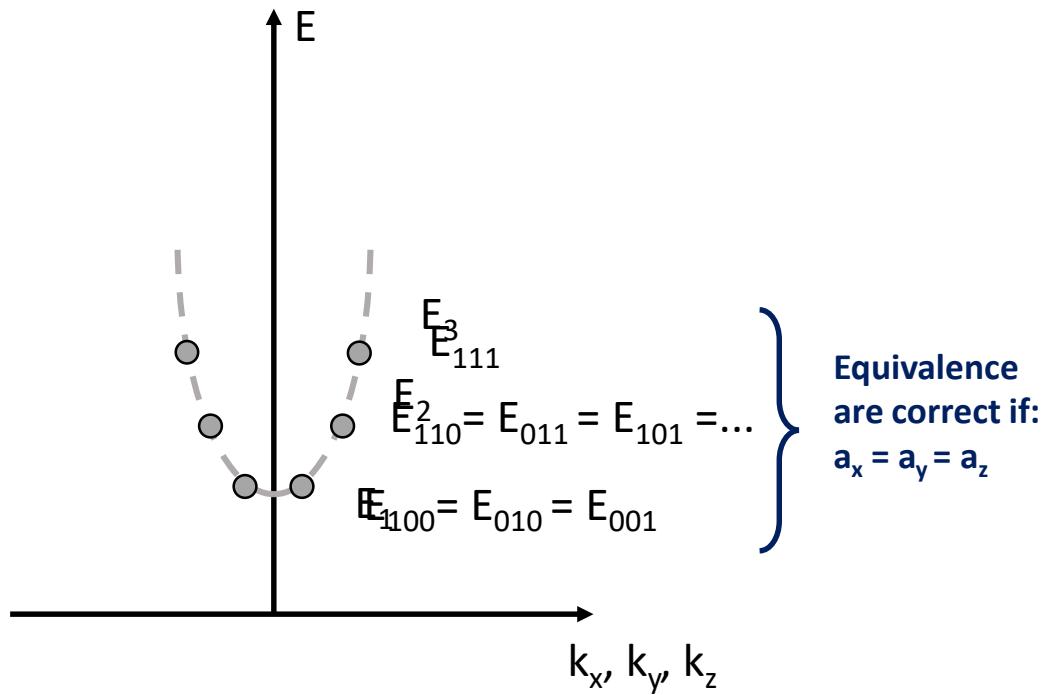


1D representation
(projection in the
confined direction)

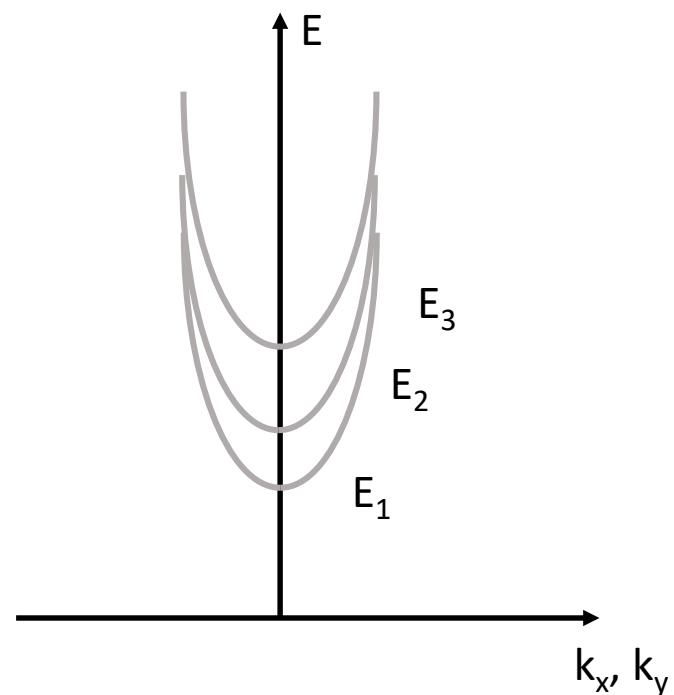
$$E_n = \frac{\hbar^2 |k_n|^2}{2m^*} \quad \text{where } k_n = \frac{n * \pi}{a}$$

$E(k)$ in quantum dots and wells

0D



2D



Equivalence
are correct if:
 $a_x = a_y = a_z$

$$E_{n, m, l} = \frac{\hbar^2 |\mathbf{k}_{n, m, l}|^2}{2m^*}$$

$$|\mathbf{k}_{n, m, l}|^2 = \left(\frac{n * \pi}{a_x}\right)^2 + \left(\frac{m * \pi}{a_y}\right)^2 + \left(\frac{l * \pi}{a_z}\right)^2$$

Homework:

Sketch the $E(k)$ relation in the case of a quantum wire (1D)

$$E_{n, x, y} = \frac{\hbar^2 |\mathbf{k}_{n, x, y}|^2}{2m^*}$$

$$|\mathbf{k}|^2 = k_x^2 + k_y^2 + k_n^2$$

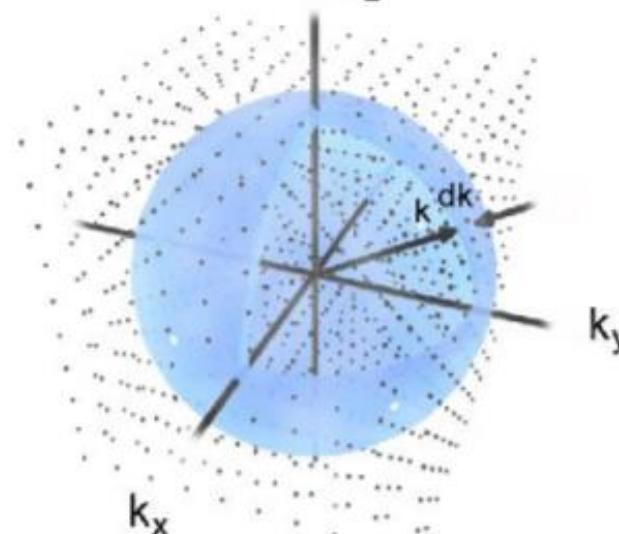
$$k_n^2 = \left(\frac{n * \pi}{a_z}\right)^2$$

Density of states in 3D

The density of space $g(E)$ is the number of states available in the material with energy between E and $E+\Delta E$

To compute it, it is necessary to understand how many k states are present in the reciprocal states. In 3D, the k states in the reciprocal space can be expressed as:

$$k = \frac{\pi^3}{L_x L_y L_z}$$



More details in
Grundmann, 6.13.3

The density of k states can be expressed as a quarter-spherical relation, including the spin-degeneracy:

$$g(k)dk = 2 * \frac{1}{8} * \frac{V}{\pi^3} * 4 * \pi k^2 dk$$

Spin-degeneracy Volume of a single state Volume of a slice of sphere in k -space

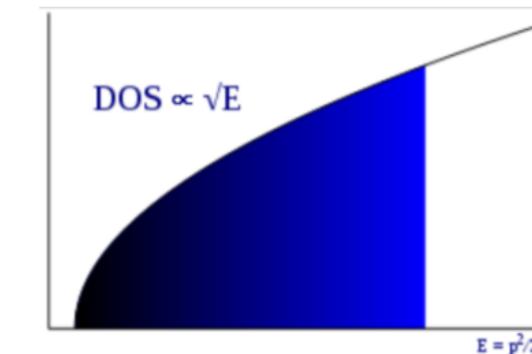
The density of k states can therefore be expressed as:

$$g(k)dk = \pi k^2 \left[\frac{V}{\pi^3} \right] dk = \left[\frac{V k^2}{\pi^2} \right] dk$$

Using the quantum-mechanical and the dispersion relationships:

$$p = \hbar k, E = p^2 / 2m^* \quad E = \frac{\hbar^2 k^2}{2m^*}$$

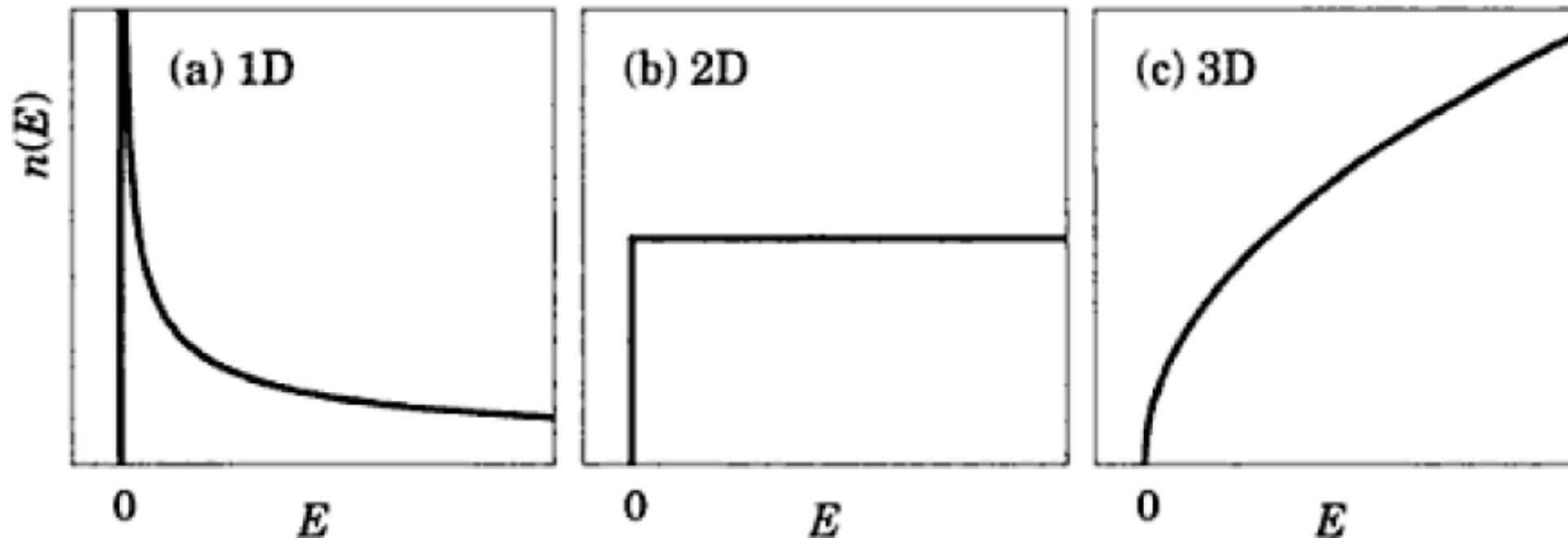
$$g(E)dE = \frac{m^* [2m^*(E-E_c)]^{1/2}}{\pi^2 \hbar^3} dE$$



$$g(E) \propto \sqrt{E}$$

3-D density of states, which are filled in order of increasing energy.

Density of states in low D



The density of states in nanostructures varies with the dimensionality.

In 3D: $g(E) \propto \sqrt{E}$

In 2D: $g(E) = \text{const}$

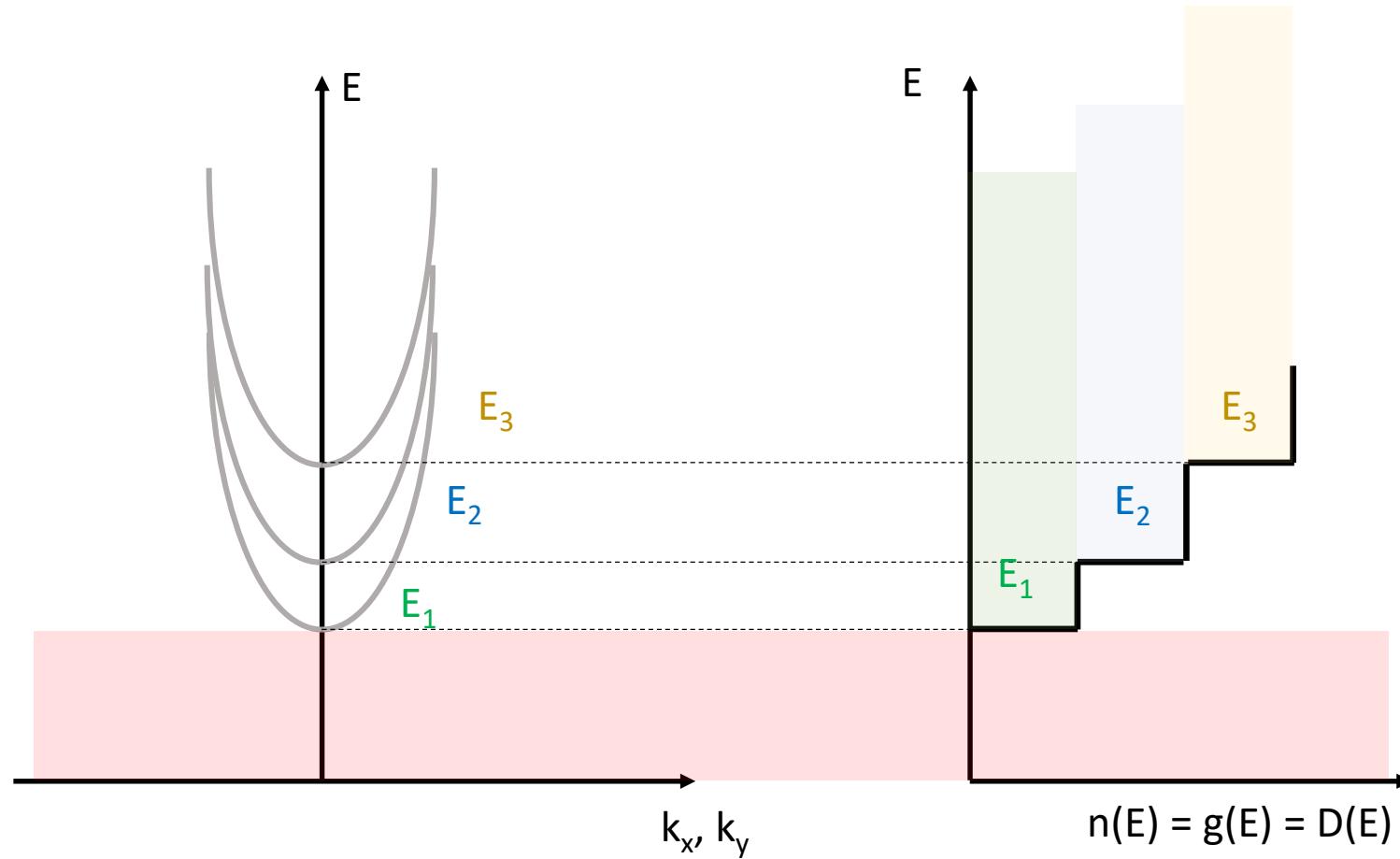
In 1D: $g(E) \propto 1/\sqrt{E}$

Homework:

Try to compute the DOS in 2D and 1D.
How does the DOS look like in the case of a quantum dot (0D)?

Dispersion relationship vs DOS

Example: 2D



Question:

In light of the DOS, explain why some devices (photodetectors, LEDs) are expected to work more efficiently in 1D form.

